Exercises

- E18.10 [1JG] We wonder if the previous classes \mathcal{F} enjoy a "*rigidity property*", that is, if from a more "weak" convergence in the class follows a more "strong" convergence. Prove the following propositions.
 - 1. Let $f_n, f : I \to \mathbb{R}$ be continuous and monotonic (weakly) increasing functions, defined over a closed and bounded interval I = [a, b]. Suppose there is a dense set J in I with $a, b \in J$, such that $\forall x \in J, f_n(x) \to_n f(x)$, then $f_n \to_n f$ uniformly.

Solution 1. [1JH]

2. Let $A \subseteq \mathbb{R}$ be open interval. Let $f_n, f : A \to \mathbb{R}$ be convex functions on A. If there is a set J dense in A such that $\forall x \in J, f_n(x) \to_n f(x)$, then, for every $[a, b] \subset A$, we have that $f_n \to_n f$ uniformly on [a, b].

Solution 2. [1JJ]

3. Let $f_n : I \to \mathbb{R}$ be a family of equicontinuous functions, ^{*a*} defined on a closed and bounded interval I = [a, b], and let ω be their modulus of continuity. If there is a set J dense in [a, b] such that $\forall x \in J$, $f_n(x) \to_n f(x)$, then, f extends from J to I so that it is continuous (with modulus ω), and $f_n \to_n f$ uniformly on [a, b].

Solution 3. [1JK]

4. Let $f_n, f : I \to \mathbb{R}$ be polynomials of degree less than or equal to N, seen as functions defined on an interval I = [a, b] closed and bounded; fix N + 1 distinct points $a \le x_0 < x_1 < x_2 < ... < x_N \le b$; assume that, for each $x_i, f_n(x_i) \to_n f(x_i)$: then f_n converge to f uniformly, and so do each of their derivatives $D^k f_n \to_n D^k f$ uniformly.

Solution 4. [1JM]

Also look for counterexamples for similar propositions, when applied to the other classes of functions seen in the previous exercise.

^aDefinition is in [1HR]