Exercises

1. f'(t) = f(t) and f(0) = b, 2. $f'(t) = t^2 f(t)$ and f(0) = b,

cients a_k so as to satisfy the following differential equations.

3.
$$f''(t) = t^2 f(t)$$
 and $f(0) = b$, $f'(0) = 0$,
4. $tf''(t) + f'(t) + tf(t) = 0$ and $f(0) = b$, $f'(0) = 0$,

5. $t^2 f''(t) + t f'(t) + (t^2 - m^2) f(t) = 0 \text{ } m \ge 2 \text{ integer, } f(0) = f'(0) = \dots f^{(m-1)} = 0, \text{ and } f^{(m)} = b.$

E18.7 [1KM] Let $b \in \mathbb{R}$, $n \in \mathbb{N}$. Assuming that $f(t) = \sum_{k=0}^{\infty} a_k t^k$ with radius of convergence r positive and $t \in (-r, r)$, determine the coeffi-

(The last two are called Bessel equations). [[IKN]]

Solution 1. [1KP]