Exercises

18.12 [1M3]Prerequisites: [1K9], [1KQ], [20V], [20W]. It is customary to define

$$e^z = \sum_{k=0}^{\infty} \frac{1}{k!} z^k$$

for $z \in \mathbb{C}$. We want to reflect on this definition.

• First, for each $z \in \mathbb{C}$, we can actually define

$$f(z) = \sum_{k=0}^{\infty} \frac{1}{k!} z^k$$

(Note that the radius of convergence is infinite — as it easily occurs using the root criterion [219]).

- We note that f(0) = 1; we define e = f(1) which is *Euler's* number^{*a*}
- Show that f(z + w) = f(z)f(w) for $z, w \in \mathbb{C}$.
- It is easy to verify that f(x) is monotonic increasing for $x \in (0, \infty)$; by the previous relation, f(x) is monotonic increasing for $x \in \mathbb{R}$.
- Then show that, for n, m > 0 integer, $f(n/m) = e^{n/m}$ (for the definition of $e^{n/m}$ see [20v]).
- Deduce that, for every $x \in \mathbb{R}$, $f(x) = e^x$ (for the definition of e^x see [20W])

Solution 1. [1M4]

^aKnown as numero di Nepero in Italy.