[1NO]Prerequisites: [1T1].Difficulty:**.In the general case (even

Exercises

sB) using a power series. Define $C(t) = \exp(-tA)B \exp(tA)$

when we do not know if A, B commute), we can express $\exp(A +$

and (recursively) set
$$Q_0 = \mathbb{I}$$
 (the identity matrix) and then

$$Q_{n+1}(t) = \int_0^t C(\tau)Q_n(\tau)\,\mathrm{d}\tau$$
 then

 $\exp(-A)\exp(A+sB) = \sum^{\infty} s^n Q_n(1) ;$

this series converges for every
$$s$$
.

In particular, the directional derivative of exp at the point A in the direction B is

(18.24)

$$\frac{d}{ds} \exp(A + sB)|_{s=0} = \exp(A)Q_1(1) = \int_0^1 \exp((1 - \tau)A)B \exp(\tau A)$$

(Hint: Use the exercise [171] with $Y(t,s) = \exp(-tA)\exp(t(A + tA))$ sB)) and then set t = 1.) Solution 1. [1N1]