Exercises

E19.1 [ING] Let $f : \mathbb{R} \to \mathbb{R}$ be a C^{∞} class function; fix $x_0 \in \mathbb{R}$ and define

$$g(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

using the Taylor series; suppose *g* has radius of convergence R > 0: So $g : J \to \mathbb{R}$ is a well-defined function, where $J = (x_0 - R, x_0 + R)$. Can it happen that $f(x) \neq g(x)$ for a point $x \in J$? And if *f* is analytic? ^{*a*}

Solution 1. [1NH]

^{*a*}By "analytic" we mean: fixed x_0 there is a series $h(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ with non-zero radius of convergence such that f = h in an open neighborhood of x_0 (neighborhood contained in the convergence disk).