Definition 21.12. *[1PB]*Let (X, d) be a metric space. Let $I = [a, b] \subseteq \mathbb{R}$ be a closed and bounded interval. Let $\gamma : I \to X$ be a parametric curve.

- If $\gamma(a) = \gamma(b)$ we will say that the curve is **closed**;
- we also say that the curve is **simple and closed** if $\gamma(a) = \gamma(b)$ and γ is injective when restricted to [a, b).^{*a*}
- If $X = \mathbb{R}^n$ and γ is class C^1 and is closed, it is further assumed that $\gamma'(a) = \gamma'(b)$.

^{*a*}That is, the injectivity is lost in the extremes.