Exercises

E23.6 [1QR] Prerequisites: [198] . Let su fix $x_0, t_0 \in \mathbb{R}$, and a bounded and continuous function $f : \mathbb{R} \to \mathbb{R}$, with $f(x_0) = 0$ but f(x) > 0 for $x \neq x_0$. We want to study the autonomous problem

$$\begin{cases} x'(t) = f(x(t)) , \\ x(t_0) = x_0 . \end{cases}$$

Note that $x \equiv x_0$ is a possible solution. Show that if, for $\varepsilon > 0$ small, ^{*a*}

$$\int_{x_0}^{x_0+\varepsilon} \frac{1}{f(y)} \, \mathrm{d}y = \infty \tag{23.7}$$

$$\int_{x_0-\varepsilon}^{x_0} \frac{1}{f(y)} \, \mathrm{d}y = \infty \tag{23.8}$$

then $x \equiv x_0$ is the only solution; while otherwise there are many class C^1 solutions: describe them all.

Solution 1. [1QS]

Conditions (23.7) and (23.8) are a special case of *Osgood uniqueness condition*, see Problem 2.25 in [18].

^{*a*}If the condition holds for a $\varepsilon > 0$ then it holds for every $\varepsilon > 0$, since f > 0 far from x_0 .