Exercises

E23.22 [1RV] Let's start with the first definition. Suppose we can apply the Implicit Function Theorem to the locus

$$E_a = \{(x, a) : F(x, y, a) = 0\}$$
;

Precisely, suppose that at a point $(\overline{x}, \overline{y}, \overline{a})$ we have that $\frac{\partial F}{\partial y} \neq 0$. To this we also add the hypothesis $\frac{\partial^2 F}{\partial aa} \neq 0$. Fixed *a*, you can express E_a locally as a graph $y = f(x, a) = f_a(x)$. We also use the hypothesis $\frac{\partial^2 F}{\partial aa} \neq 0$ to express locally $\frac{\partial F}{\partial a} = 0$ as a graph a = $\Phi(x, y)$. Defining $G(x, y) \stackrel{\text{\tiny def}}{=} F(x, y, \Phi(x, y))$, show that G = 0 can be represented as y = g(x). Finally, show that g is the envelope of the curves f_a .

Solution 1. [1RW]