Exercises

E24.4 [1TG] Note: adapted from the written exam, April 9th, 2011.

Let $f : [0, \infty) \to \mathbb{R}$ be a continuous function such that

$$\lim_{x \to +\infty} f(x)/x = +\infty$$

- Fixed a < f(0), let M_a be the set of $m \in \mathbb{R}$ such that the line y = mx + a intersects the graph y = f(x) of the function f at least in one point: show that M_a admits minimum $\hat{m} = \hat{m}(a)$;
- show that \hat{m} depends continuously on a, ^{*a*}
- and that $\hat{m}(a)$ is monotonic strictly decreasing.
- If *f* is differentiable, show that the line $y = \hat{m}(a)x + a$ is tangent to the graph at all points where it encounters it.
- Suppose further that *f* is of class C^2 and that $f''(x) > 0 \forall x > 0^b$. Show that there is only one point *x* where the line $y = \hat{m}(a)x + a$ meets the graph y = f(x); name it $\hat{x} = \hat{x}(a)$;
- and show that the functions $a \mapsto \hat{x}(a)$ and $a \mapsto \hat{m}(a)$ are differentiable.

Solution 1. [1TH]

^{*a*}Tip: Rethink the exercise [14W].

^bUse the previous exercise [1TD]!