Exercises

E24.1 [1TY] Note:written exam 12/1/2013.

Given a subset *E* of \mathbb{N} and an integer $n \in \mathbb{N}$, the expression

$$\frac{\operatorname{card}(E \cap \{0, 1, \dots, n\})}{n+1}$$

indicates which fraction of the segment $\{0, 1, ..., n\}$ is contained in E. The notion of "density" in \mathbb{N} of *E* refers to the behavior of such fractions as n tends to infinity. Precisely, we define the upper density $\overline{d}(E)$ of E and its lower density $\underline{d}(E)$ as

$$\overline{d}(E) = \limsup_{n \to \infty} \frac{\operatorname{card}(E \cap \{0, 1, \dots, n\})}{n+1}$$
$$\underline{d}(E) = \liminf_{n \to \infty} \frac{\operatorname{card}(E \cap \{0, 1, \dots, n\})}{n+1}$$

If $d(E) = \underline{d}(E) = d \in [0, 1]$, E is said to have density d. (See also [52].)

- (a) Prove that, for every α ∈ ℝ, α ≥ 1, the set E_α = [nα] : n ∈ N has density d = 1/α (the symbol [x] indicates the integer part of x ∈ R).
- (b) Let $E = \{m_0, m_1, ..., m_k, ...\}$ be an infinite set, with $m_0 < m_1 < ... < m_k < ...$ Prove that $\overline{d}(E) = \limsup_{k \to \infty} \frac{k}{m_k}$ and $\underline{d}(E) = \liminf_{k \to \infty} \frac{k}{m_k}$.

(c) Find a set E with $\overline{d}(E) = \overline{d}(\mathbb{N} \setminus E) = 1$.