Exercises

E24.16 [1V4]Topics:matrix,determinant.Prerequisites:[1V2].Difficulty:*.

We want to generalize the results of the previous exercise [1vo] to the case of matrices $n \times n$.

Recall the following properties of the determinant of matrices $A \in \mathbb{R}^{n \times n}$.

- The rank is the dimension of the image of *A* (considered as a linear application from ℝⁿ to ℝⁿ) and is also the maximum number of linearly independent columns in *A*.
- *A* has rank *n* if and only $det(A) \neq 0$.
- If you exchange two columns in *A*, the determinant changes sign;
- if you add a multiple of another column to a column, the determinant does not change.
- The characterization of rank through minors, "The rank of A is equal to the highest order of an invertible minor of A".
- Laplace's expansion of the determinant, and Jacobi's formula (*cf* [1V2]).
- The determinant of *A* is equal to the determinant of the transpose; So every previous result holds, if you read "row" instead of "column".

See also in [72, 58].

Show the following results.

- 1. Show that the gradient of the function det(A) is not zero, if and only if the rank of *A* is at least n 1.
- 2. Let *Z* be the set of matrices $\mathbb{R}^{n \times n}$ with null determinant. Show that it is a closed set with an empty interior.
- 3. Fix *B* a matrix with rank at most n 2, show that the thesis of the theorem is false in the neighborhoods U_B of the matrix *B*, in the sense that $Z \cap U_B$ is not contained in a surface^{*a*}.

[1V5]

Solution 1. [1V6]

 $^{^{}a}$ This problem is simpler than you think... There are too many matrices with zero determinant close to B...