- **Definition 4.2.** [1XB](Solved on 2022-11-03)
- **(N1)** There is a number $0 \in \mathbb{N}$.
- **(N2)** There is a function $S : \mathbb{N} \to \mathbb{N}$ (called "successor"), such that ^{*a*}
- **(N3)** $S(x) \neq 0$ for each $x \in \mathbb{N}$ and
- **(N4)** *S* is injective, that is, $x \neq y$ implies $S(x) \neq S(y)$.
- **(N5)** If U is a subset of \mathbb{N} such that: $0 \in U$ and $\forall x, x \in U \Rightarrow S(x) \in U$, then $U = \mathbb{N}$.
- We will often write Sn instead S(n) to ease notations.

^{*a*}We are using the same word *successor* used in the definition [120] for well ordered sets, and in [24X] in Zermelo-Fraenkel theory: we will see how these definition are "compatible".