Exercise 4.5. [1xg] Prove ^{*a*} by induction the following assertions:

1.
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2};$$

2. $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6};$
3. $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4};$
4. $\sum_{k=1}^{n} \frac{1}{4k^2 - 1} = \frac{n}{2n+1};$
5. $\sum_{k=1}^{n} \frac{k}{2k} = 2 - \frac{n+2}{2^n};$

- 6. $n! \ge 2^{n-1};$
- 7. If x > -1 is a real number and $n \in \mathbb{N}$ then $(1 + x)^n \ge 1 + nx$ (Bernoulli inequality).

Solution 1. [1XK]

^{*a*}In the following exercises we give for good knowledge of the operations typical of the natural numbers, and their order relation.