ogni insieme A, esiste un insieme $\mathcal{P}(A)$ i cui elementi sono tutti e soli i sottoinsiemi di A. Una formula abbreviata di definizione è $\mathcal{P}(A) \stackrel{\text{def}}{=} \{B : B \subseteq A\} \quad .$

Definizione 3.52. [171] L'assioma dell'insieme potenza dice che per

$$\mathcal{P}(A)$$
 si chiama anche insieme delle parti.
Nel linguaggio formale degli assiomi di Zermelo-Fraenkel, l'assioma si
.

scrive: $\forall A, \exists \ Z, \forall y, y \in Z \iff (\forall z, z \in y \implies z \in A) \quad ;$

questa formula comporta che l'insieme potenza
$$Z$$
 è unico, dunque
possiamo denotarlo con il simbolo $\mathcal{P}(A)$ senza tema di equivoci.
Notate che

votate cne $(orall z,z\in y\implies z\in A)$ i può abbreviare con $y\in A$ e dunque l'assioma può essere scritto come

si può abbreviare con $y \subseteq A$ e dunque l'assioma può essere scritto come $\forall A \exists Z \ \forall v \ v \in Z \iff (v \subseteq A) :$

 $\forall A, \exists Z, \forall y, y \in Z \iff (y \subseteq A) \quad ;$

usando poi l'estensionalità, si ottiene che $Z = \{y : (y \subseteq A)\}$.