Definition 3.40. [1Y2] Given I a non-empty family of indices and given C_i sets (one for each $i \in I$), then the **union**

$$\bigcup_{i\in I}C_i$$

is a set, which contains all (and only) the elements of all sets C_i; in formula^a

$$\bigcup_{i \in I} C_i \stackrel{\text{\tiny def}}{=} \{ x : \exists i \in I, x \in C_i \} \quad .$$

If only two sets are given C_1, C_2 , we usually write $C_1 \cup C_2$ to indicate the union; and similarly when finite sets are given.

^{*a*}This is a more manageable version of the official axiom. The official definition is located in [026].