Proposition 3.167. [126]

• Suppose that the function $f : A \times A \rightarrow B$ is invariant for the equivalence relation \sim in all its variables, i.e.

$$\forall x, y, v, w \in A, \quad x \sim y \land v \sim w \Rightarrow f(x, v) = f(y, w) \quad ;$$

let \tilde{f} be the projection to the quotient \tilde{f} : $A/\sim \times A/\sim \rightarrow B$ that satisfies

$$f(x, y) = \widetilde{f}(\pi(x), \pi(y))$$
 .

If f is commutative (resp. associative) then \tilde{f} is commutative (resp. associative).

- If R is a relation in A × A invariant for ~, and R is reflexive (resp symmetrical, antisymmetric, transitive) then R is reflexive (resp symmetrical, antisymmetric, transitive).
- If A and B are ordered and the order is invariant, and f is monotonic, then f is monotonic.