Proposition 2.196. [126]
Suppose that the function f: A × A → A is invariant for the equivalence relation ~ in all its variables, in the sense defined in

[(2.194)] let \tilde{f} be the projection to the quotient

$$\widetilde{f}: A/\sim \times A/\sim \to A/\sim$$
 .

If f is commutative (resp. associative) then \widetilde{f} is commutative (resp. associative).

- If R is a relation in $A \times A$ invariant for \sim , and R is reflexive (resp symmetrical, antisymmetric, transitive) then \widetilde{R} is reflexive (resp symmetrical, antisymmetric, transitive).
- symmetrical, antisymmetric, transitive).

 Consider the ordered sets (A, \leq_A) and (B, \leq_B) , let $f: A \to B$ be a monotonic function; suppose moreover that \leq_A is invariant with

be its projection to the quotient: then \tilde{f} is monotonic.

respect to an equivalence relation \sim on A, e and let $\widetilde{f}: A/_{\sim} \to B$