Proposition 3.232. *[129]* If we now fix a family \mathcal{F} of sets of interest, we first define the relation $A \sim B \iff |A| = |B|$ in it; it is easily shown that this is an equivalence relation; so we get that $|A| \le |B|$ is a total order in \mathcal{F}/\sim .

Proof. This derives from the Proposition [127], since the relation

 $ARB \iff |A| \le |B|$

is reflexive and transitive, and by Cantor–Bernstein's Theorem

$$|A| \le |B| \land |B| \le |A| \iff A \sim B \quad .$$