5 Groups, Rings, Fields

We review these definitions.

Definition 5.1. [1ZF]

Definition 5.2. [126]

We assume that $0 \neq 1$ (otherwise {0} would be a ring).

Examples of commutative rings are: integer numbers \mathbb{Z} , polynomials A[x] with coefficients in a commutative ring A.

An example of a non-commutative ring is given by matrixes $\mathbb{R}^{n \times n}$, with the usual operation of multiplication and addition.

Definition 5.3. [12H]

Some field examples are: rational numbers \mathbb{Q} , the real numbers \mathbb{R} and the complex numbers \mathbb{C} .

Remark 5.4. [20R]

Remark 5.5. [12W]

Definition 5.6. [12J]

Examples of ordered field are: rational numbers \mathbb{Q} the real numbers \mathbb{R} . The complex numbers \mathbb{C} do not allow an ordering satisfying the above properties (see exercise [08V]).

Definition 5.7. [12K]

38

Exercises

E5.8 [1ZM]

E5.9 [1ZP]

E5.10 [29C]

E5.11 [12R]

E5.12 [1ZS]

E5.13 [203]

E5.14 [1ZT]

- E5.15 [1ZV]
- E5.16 [1ZX]
- E5.17 [12Y]
- E5.18 [1ZZ]
- E5.19 [08V]
- E5.20 [200]
- E5.21 [202]
- E5.22 [20T]

E5.23 [205]

QuasiEsercizio 19. [08W]

³⁸Parts of the following exercises are from Chap. 2 Sec. 2 in [3], or Chap. 1 in [19].

[1ZD]