Definition 5.2. [1ZF](Solved on 2022-11-15) A **group** is a set G equipped with a binary operation *, that associates an element $a * b \in G$ to each pair $a, b \in G$, respecting these properties.

- 1. Associative property: for any given $a, b, c \in G$ we have (a*b)*c = a*(b*c).
- Existence of the neutral element: an element denoted by e such that a * e = e * a = a.
- 3. Existence of the inverse: each element $a \in G$ is associated with an **inverse element** a', such that a * a' = a' * a = e. The inverse of the element a is often denoted by a^{-1} (or -a if the group is commutative). ^a

A group is said to be **commutative** (or abelian) if moreover a * b = b * a for each pair $a, b \in G$.

^{*a*}The notation a^{-1} is justified by the fact that the inverse element is unique: *cf* [1ZP].