E5.16 [1ZV]Prerequisites:[29D],[1ZS],[1ZT]. Prove a than in an ordered ring F:

2. $x > 0 \Rightarrow -x < 0$ 3. $y > x \Rightarrow -y < -x$;

Exercises

7. $x \ge a \ge 0 \land y \ge b \ge 0 \Rightarrow x \cdot y \ge a \cdot b$;

^aFrom Cap. 2 Sec. 7 in [3], or [20] Prop. 1.18

4. $x \le y \land a \le 0 \Rightarrow a \cdot x \ge a \cdot y$;

1. for each $x \in F$, $x^2 \ge 0$, in particular $1 = 1^2 > 0$;

5. $x \ge a \land y \ge b \Rightarrow x + y \ge a + b$;

6. $x > a \land y \ge b \Rightarrow x + y > a + b$;

Prove than in an ordered field *F*:

1. $x > a > 0 \land y > b \ge 0 \Rightarrow x \cdot y > a \cdot b$;

1. $x > a > 0 \land y > b$ 2. $x > 0 \Rightarrow x^{-1} > 0$;

2. $x > 0 \Rightarrow x^{-1} > 0$; 3. $y > x > 0 \Rightarrow x^{-1} > y^{-1} > 0$;

> 0 or both < 0); **Solution 1.** [29B]

4. $x \cdot y > 0$ if and only if x and y agree on sign (i.e. either both