Exercise 5.17. *[12X]* In an ordered field F we call $P = \{x \in F : x \ge 0\}$ the set of positive (or zero) numbers; it satisfies the following properties: ^a

•
$$x, y \in P \Rightarrow x + y, x \cdot y \in P$$
,

•
$$P \cap (-P) = \{0\}$$
 and

•
$$P \cup (-P) = F$$
.

vice versa if in a field F we can find a set $P \subseteq F$ that satisfies them, then F is an ordered field by defining $x \leq y \Leftrightarrow y - x \in P$.

^aFrom Chap. 2 Sect. 7 in [?]