Exercise 5.22.	[202] Let F be a field; given $\alpha \neq 0$ and $h \in \mathbb{N}$	consider
the recursive def	finition of exponentiation α^h defined from α^0	= 1 and
$\alpha^{(n+1)} = \alpha^n \cdot \alpha,$; then prove that $\alpha^{h+k} = \alpha^h \alpha^k$ and $(\alpha^h)^k = \alpha^h \alpha^k$	$\alpha^{(hk)}$ for
every $k, h \in \mathbb{N}$.	-	-

-
