Proposition 6.18. Suppose for simplicity that $I = \mathbb{R}$. Putting together the previous [200] ideas, we can write equivalently:

• if $x_0 \in \mathbb{R}$,

,	
$\exists \delta > 0, \forall x \neq x_0, x - x_0 < 0$	$P(x)$ definitely applies for x tending to x_0
$\delta \Rightarrow P(x)$	
$\forall \delta > 0, \exists x \neq x_0, x - x_0 <$	$P(x)$ frequently applies for x tending to x_0
$\delta \wedge P(x)$	

• whereas in case $x_0 = \infty$

$\exists y \in \mathbb{R}, \forall x, x > y \Rightarrow P(x)$	$P(x)$ definitely applies for x tending to ∞
$\forall y \in \mathbb{R}, \exists x, x > y \land P(x)$	$P(x)$ frequently applies for x tending to ∞

• and similarly $x_0 = -\infty$

$\exists y \in \mathbb{R}, \forall x, x < y \Rightarrow P(x)$	$P(x)$ definitely applies for x tending to $-\infty$
$\forall y \in \mathbb{R}, \exists x, x < y \land P(x)$	$P(x)$ frequently applies for x tending to $-\infty$