Exercise 6.8. [207] Prerequisites: [207]. Let $\alpha > 0, \alpha \in \mathbb{R}$ be fixed. We know that, for every natural $n \ge 1$, there exists an unique $\beta > 0$ such that $\beta^n = \alpha$, and β is denoted by the notation $\sqrt[n]{\alpha}$. (See e.g. Proposition 2.6.6 Chap. 2 Sec. 6 of the course notes [?] or Theorem 1.21 in [?]). Given $q \in \mathbb{Q}$, we write q = n/m with $n, m \in \mathbb{Z}, m \ge 1$, we define

$$\alpha^q \stackrel{\scriptscriptstyle def}{=} \sqrt[m]{\alpha^n}$$

Show that this definition does not depend on the choice of representation q = n/m; that

$$\alpha^q = \left(\sqrt[m]{\alpha}\right)^n \quad ;$$

that for $p, q \in \mathbb{Q}$

$$\alpha^q \alpha^p = \alpha^{p+q}$$
 , $(\alpha^p)^q = \alpha^{(pq)}$;

show that when $\alpha > 1$ then $p \mapsto \alpha^p$ is strictly monotonic increasing.