Theorem 7.20. [210] Assume that $a_n \neq 0$. Let $\alpha = \limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$ then

- if $\alpha < 1$ the series $\sum_{n=1}^{\infty} a_n$ converges absolutely;
- if $\alpha \ge 1$ nothing can be concluded.

Proof. • If $\alpha < 1$, taken $L \in (\alpha, 1)$ you have eventually $\frac{|a_{n+1}|}{|a_n|} < L$ so there is a N for which $\frac{|a_{n+1}|}{|a_n|} < L$ for each $n \ge N$, by induction it is shown that $|a_n| \le L^{n-N} |a_N|$ and ends by comparison with the geometric series.

• Let's see some examples. For the two series 1/n and $1/n^2$ you have $\alpha = 1$.

Defining

$$a_n = \begin{cases} 2^{-n} & n \text{ even} \\ 2^{2-n} & n \text{ odd} \end{cases}$$
(7.21)

we obtain a convergent series but for which $\alpha = 2$.