Theorem 7.23. [2:07 If (a,), C R has positive terms and is monotonic
(weakly) decreasing, the series converges if and only if the series
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converges.

Proof. Since the sequence (a,,),, is decreasing, then for h € N
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We note now that
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so we can add the terms in (7.24) to get
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where the term on the right is finite if and only if the one on the left is
finite, because
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the proof ends by the comparison theorem O
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