
Theorem 7.23. [21D] If (𝑎𝑛)𝑛 ⊂ ℝ has positive terms and is monotonic
(weakly) decreasing, the series converges if and only if the series
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converges.

Proof. Since the sequence (𝑎𝑛)𝑛 is decreasing, then for ℎ ∈ ℕ
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and therefore
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so we can add the terms in (7.24) to get
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where the term on the right is finite if and only if the one on the left is
finite, because

∞
∑
ℎ=0

2ℎ𝑎2ℎ = 𝑎1 + 2
∞
∑
ℎ=0

2ℎ𝑎2(ℎ+1) ∶

the proof ends by the comparison theorem
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