Definition 3.137. [2117] *Given two ordered sets* (X, \leq_X) *and* (Y, \leq_Y) , with X, Y disjoint, the concatenation of X with Y is obtained defining $Z = X \cup Y$ and providing it with the ordering \leq_Z given by:

• if
$$z_1, z_2 \in X$$
 then $z_1 \leq_Z z_2$ if and only if $z_1 \leq_X z_2$;

• if
$$z_1, z_2 \in Y$$
 then $z_1 \leq_Z z_2$ if and only if $z_1 \leq_Y z_2$;

• If
$$z_1 \in X$$
 and $z_2 \in Y$ then you always have $z_1 \leq_Z z_2$.

This operation is sometimes denoted by the notation Z = X + Y. If the sets are not disjoint, we can replace them with disjoint sets defined by $\tilde{X} = \{0\} \times X$ and $\tilde{Y} = \{1\} \times Y$, then we may "copy" the respective orders, and finally we can perform the concatenation of \tilde{X} and \tilde{Y} .