Definition 3.81. [229] *Given* $x, y \in X$ remember that x < y means $x \le y \land x \ne y$.

- When we have that x ≤ y or y ≤ x we will say that the two elements are "comparable". Conversely if neither x ≤ y nor y ≤ x then we will say that the two elements are "incomparable".
- An element $m \in X$ is called maximal if there is no element $z \in X$ such that m < z.
- An element $m \in X$ is called minimal if there is no element $z \in X$ such that z < m.
- An element $m \in X$ is called maximum, or greatest element, if, for any element $z \in X$, $z \le m$.
- An element $m \in X$ is called minimum, or least element, if, for any element $z \in X$, $z \leq m$.

Note that the definitions of minimum/minimal can be obtained from maximum/maximal by reversing the order relation (and vice versa).