Exercises

- B.132 [22P] (Proposed on 2023-01-17) Given two ordered non-empty sets (X, \leq_X) and (Y, \leq_Y) , and $f : X \to Y$ as defined in [07V].
 - If $A \subseteq X$ and $m = \max A$ then $f(m) = \max f(A)$; similarly for the minimums;
 - (X, \leq_X) is totally ordered if and only if (Y, \leq_Y) is;
 - (X, \leq_X) is well ordered if and only if (Y, \leq_Y) is.
 - Suppose that (X, \leq_X) and (Y, \leq_Y) are well ordered, let S_X and respectively S_Y be the functions "successor", [120], then we have that x is not the maximum of X if and only if f(x) is not the maximum of Y, and in this case $y = S_X(x)$ if and only if $f(y) = S_Y(f(x))$.