**Lemma 3.120.** [225] Let  $A \subseteq X$  be a not empty set. We recall these properties of the supremum.

- 1. If A has maximum m then  $m = \sup A$ .
- 2. Let  $s \in X$ . We have  $s = \sup A$  if and only if
  - for every  $x \in A$  we have  $x \leq s$ .
  - for every  $x \in X$  with x < s there exists  $y \in A$  with x < y.

This last property is of very wide use in the analysis! The proof is left as a (useful) exercise.

## Solution 1. [227]