- **Theorem 3.183.** [23B] Let $A \supseteq \mathbb{N}$ and P(n) be a logical proposition that can be evaluated for $n \in A$. Suppose the following two assumptions are satisfied:
 - P(n) is true for n = 0 and
 - $\forall n \in \mathbb{N}, P(n) \Rightarrow P(S(n));$
- then *P* is true for every $n \in \mathbb{N}$.
- The first hypothesis is known as "the basis of induction" and the second as "inductive step"

Proof. Let $U = \{n \in \mathbb{N} : P(n)\}$, we know that $0 \in U$ and that $\forall x, x \in U \Rightarrow S(x) \in U$, so U is S-saturated and $U \subseteq N$ we conclude that $U = \mathbb{N}$.