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3.8 Natural numbers in ZF [246]

In this section we will build a model of the natural numbers inside the ZF set theory;
this model satisfies Peano’s axioms [1XD] and has an order relation that satisfies [26H],
so this model enjoys all properties described in Sec. [1X9]; for this reason in this section
we will mostly discuss properties that are specific of this model.

3.8.1 Successor

Definition 3.195. [24X]

Exercises

E3.196 [24V]

E3.197 [24M]

E3.198 [239]

E3.199 [245]

E3.200 [1YM]

E3.201 [24Q]

E3.202 [24S]

3.8.2 Natural numbers in ZF

Definition 3.203. [243]

Using the axiom of infinity [243] we can prove the existence of the set of natural
numbers.

Theorem 3.204. [244]

Example 3.205. [291]

Remark 3.206. [25C]

We can also prove directly the induction principle.

Theorem 3.207 (Induction Principle). [23B]

Theorem 3.208. [24D]

To prove the above theorem, the exercises in the following section can be used.

Remark 3.209. [26K]

The ordered set ℕ,⊆ then enjoys these properties.

Proposition 3.210. [26J]

More details are in the course notes (Chap. 1 Sec. 7 in [?]); or [?],[?].
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3.8.3 Transitive sets

Definition 3.211. [24Z]

Example 3.212. [290]

Exercises

E3.213 [25J]

E3.214 [257]

E3.215 [26N]

E3.216 [26P]

The previous exercises prove Theorem [24D], then by results of Sec. [1X9] we obtain
that (ℕ, ≤) is well ordered.

Here following are other interesting exercises.

Exercises

E3.217 [269]

E3.218 [265]

E3.219 [25D]

E3.220 [25W]

E3.221 [25Z]

3.8.4 Ordinals

Perusing the above results we can give some elements of the theory of ordinals.

Definition 3.222. [26D]

Exercises

E3.223 [25Q]

E3.224 [25B]

E3.225 [25N]

E3.226 [25M]

E3.227 [25G]

E3.228 [255]

E3.229 [26S]

E3.230 [26V]

Remark 3.231. [275]

[ (da sistemare) ]
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