Proposition 4.48. [28R]

- (Addition and ordering compatibility) You have $n \le m$ if and only if $n + k \le m + k$.
- (Multiplication and ordering compatibility) When $k \neq 0$ you have $n \leq m$ if and only if $n \times k \leq m \times k$.
- In particular (remembering [28м]) the map n → n×h is strictly increasing (and hence injective).

Proof. We will use some properties left for exercise.

- If $n \le m$, by definition m = n + h, then $n + k \le m + k$ because m + k = n + h + k (note that we are using associativity). If $n + k \le m + k$ let then j the only natural number such that n + k + j = m + k but then n + j = m by cancellation [27V].
- If $n \le m$ then m = n + h therefore $m \times k = n \times k + h \times k$ so $n \times k \le m \times k$. Vice versa let $k \ne 0$ and $n \times k \le m \times k$ i.e. $n \times k + j = m \times k$: divide j by k using the division [28J], we write $j = q \times k + r$ therefore for associativity $(n + q) \times k + r = m \times k$ but for the uniqueness of the division r = 0; eventually collecting $(n+q) \times k = m \times k$ and using [28M] we conclude that (n+q) = m.