Proposizione 4.48. [28R] • (Compatibilità di addizione e ordinamento) $Si\ ha\ n < m\ se\ e\ solo$

- se n + k < m + k. • (Compatibilità di moltiplicazione e ordinamento) *Quando* $k \neq 0$ si ha $n \le m$ se e solo se $n \times k \le m \times k$.
- In particolare (ricordando [28M]) la mappa $n\mapsto n imes h$ è strettamente

Dimostrazione. Useremo alcune proprietà lasciate per esercizio.

crescente (e dunque iniettiva).

concludiamo che (n + q) = m.

- Se $n \le m$, per definizione m = n+h, allora $n+k \le m+k$ in quanto
- m + k = n + h + k (notate che stiamo usando l'associatività). Se $n+k \le m+k$ sia allora j l'unico naturale tale che n+k+j=m+kma allora n + j = m per eliminazione [27V].
- Se $n \le m$ allora m = n + h dunque $m \times k = n \times k + h \times k$ così $n \times k \le m \times k$. Viceversa sia $k \ne 0$ e sia $n \times k \le m \times k$

cioè $n \times k + j = m \times k$: dividiamo j per k usando la divisione con resto [28], scriviamo $i = q \times k + r$ dunque per associatività $(n+q) \times k + r = m \times k$, ma per unicità della divisione con resto r = 0: infine raccogliendo $(n + q) \times k = m \times k$ e usando [28M]