Definition 4.12. [292] Having fixed the parameter $h \in \mathbb{N}$, we define the operation $h + \cdot$, which will be a function $f_h : \mathbb{N} \to \mathbb{N}$ given by $f_h(n) = h + n$, using a recursive definition: we wish to express the rules

•
$$h + 0 = h$$

•
$$\forall n \in \mathbb{N}, h + S(n) = S(h + n)$$
.

To this end, set $A = \mathbb{N}$, and g(n, a) = S(a), we rewrite the above as recursive rules for f_h

•
$$f_h(0) = h$$

•
$$\forall n \in \mathbb{N}, f_h(S(n)) = g(n, f_h(n)) = S(f_h(n))$$

This defines recursively f_h . Considering then the parameter h as a variable, we have constructed the addition operation, and we define the operation "+" between natural numbers as $h + n = f_h(n)$.