- **Definition 8.vii.3.** [2B9] Let (X, τ) and (Y, σ) be two topological spaces, with (Y, σ) Hausdorff; let $f : X \to Y$ be a function. It is said that f is **continuous in** x_0 if $\lim_{x\to x_0} f(x) = f(x_0)$. It is said that f is **continuous** if (equivalently)
 - *if* f *is continuous at every point, that is* $\lim_{x \to y} f(x) = f(y)$ *for every* $y \in X$, *or*

• if
$$f^{-1}(A) \in \tau$$
 for each $A \in \sigma$.

- (Thm. 5.7.4 in the notes [?].).
- A continuous bijective function $f : X \to Y$ such that the inverse function $f^{-1} : Y \to X$ is again continuous, is called **homeomorphism**.