Exercises

- E8.102 [2BP] Prerequisites: [OKK], [OMM], [OK4]. Difficulty:*. Let Ω be an infinite uncountable set; consider $X = \mathbb{R}^{\Omega}$ with the topology τ seen in [OMM].
 - 1. Show that every point in (X, τ) does not admit a countable fundamental system of neighborhoods.
 - 2. Setting

 $C \stackrel{\text{def}}{=} \{ f \in X, f(x) \neq 0 \text{ for at most countably many } x \in \Omega \}$ (8.103)show that $\overline{C} = X$:

- 3. and that if $(f_n) \subset C$ and $f_n \to f$ pointwise then $f \in C$.
- 4. Let *I* be the set of all finite subsets of *Ω*, this is a filtering set if sorted by inclusion; consider the net

$$\varphi: I \to X \quad , \varphi(A) = \mathbb{1}_A$$

then $\forall A \in I, \varphi(A) \in C$ but

$$\lim_{A \in I} \varphi(A) = \mathbb{1}_X \notin C$$

Solution 1. [2BQ]