Exercises

- E8.91 [2F7]Prerequisites: [OM3], [OM5], [OM7]. Let, more in general, I be a non-empty index set, and let (X_i, τ_i) be topological spaces, for $i \in I$; let \mathcal{B}_i be a base for τ_i . (Note that the choice $\mathcal{B}_i = \tau_i$ is allowed.) Let $X = \prod_{i \in I} X_i$ be the Cartesian product.
 - We define the *product topology* τ on *X*, similarly to [OM3], but with a twist.
 - A base \mathcal{B} for τ is the family of all sets of the form $A = \prod_{i \in I} A_i$ where

$$\forall i \in I, A_i \in \mathcal{B}_i \lor A_i = X_i \ ,$$

and moreover $A_i = X_i$ but for finitely many *i*.

Show that \mathcal{B} satisfies the requirements in <code>[okx]</code>, so it is a base for the topology τ that it generates. Show that the product topology does not depend on the choice of the bases \mathcal{B}_i .

Solution 1. [2F8]