Exercises

E8.h.18 [2F9]Prerequisites: [2F5], [2F7], [071], [2F7].

Consider totally ordered sets (X_i, \leq_i) (each has at least two elements), and the associated *order topologies* τ_i .

Let $I = \mathbb{N}$ or $I = \{0, 1, ..., N\}$; let $X = \prod_{i \in I} X_i$ be the Cartesian product. Consider these two topologies.

- We define the *product topology* τ on *X*, as explained in [2F7].
- We order *X* with the lexicographical order \leq , and then we build the order topology σ on *X*. (See [071],[2F7])

Is there an inclusion between σ and τ ?

If every X_i is finite, prove that these two topologies coincide ^{*a*}.

Solution 1. [2FC]

^{*a*}Note that the order topology on a finite set is also the discrete topology; use [2FD].