Exercises
[0CD]Given \(p(x)=a_ 0+a_ 1x+\cdots + a_ n x^ n\), \(pββ[z]\) such that \(p(πΌ)=0\), given \(bββ\) build a \(qββ[z]\) such that \(q(b+πΌ)=0\).
So if \(πΌ\) is algebraic then \(b+πΌ\) is algebraic.
[0CD]Given \(p(x)=a_ 0+a_ 1x+\cdots + a_ n x^ n\), \(pββ[z]\) such that \(p(πΌ)=0\), given \(bββ\) build a \(qββ[z]\) such that \(q(b+πΌ)=0\).
So if \(πΌ\) is algebraic then \(b+πΌ\) is algebraic.