EDB β€” 0FM

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [0FM] Prerequisites:[217].Note:Known as: Mertens’ theorem..

    If the series \(βˆ‘_{n=0}^∞ a_ n\) converges absolutely and \(βˆ‘_{n=0}^∞ b_ n\) converges, show that the series \(βˆ‘_{n=0}^∞ c_ n\) converges and

    \[ βˆ‘_{n=0}^∞ c_ n =βˆ‘_{n=0}^∞ a_ n βˆ‘_{n=0}^∞ b_ n\quad . \]

    Solution 1

    [0FN]

    [ [218] ]

Download PDF
Bibliography
Book index
  • Mertens
  • theorem, Mertens' ---
  • convergence, of a series
Managing blob in: Multiple languages
This content is available in: Italian English