Esercizi
[0FT]Supponiamo che \(f\) sia monotona, mostrate che \(\lim _{j∈ J} f(j)\) esiste (possibilmente infinito) e coincide con \(\sup _ J f\) (se è crescente) o con \(\inf _ J f\) (se è decrescente).
Deducete che
\begin{eqnarray*} \limsup _{j∈ J}f(j){\stackrel{.}{=}}\lim _{j∈ J} \sup _{k≥ j} f(k)\\ \liminf _{j∈ J}f(j){\stackrel{.}{=}}\lim _{j∈ J} \inf _{k≥ j} f(k) \end{eqnarray*}sono sempre ben definiti.