Esercizi
[0G0]Difficoltà:*. Siano \(I\) famiglia di indici; sia \(a_{i,j}:I× ℕ→ [0,∞]\) una successione generalizzata, tale che \(j↦ a_{i,j}\) è debolmente crescente per ogni fissato \(i\); si dimostri allora che
\[ ∑_{i∈ I} \lim _{j→∞} a_{i,j} = \lim _{j→∞} ∑_{i∈ I} a_{i,j}~ ~ . \](Questa è una versione per le serie del noto Teorema di convergenza monotona).
1