EDB — 0KS

view in whole PDF view in whole HTML

View

English

E82

[0KS] Prerequisites:[0H0], [0KQ], [0KM].Let \({\mathcal B}\) be a base for a topology \(𝜏\) on \(X\). Show that, for any given \(A⊆ X\),

\[ {{A}^\circ } = {\underline⋃} \{ B∈{\mathcal B}: B⊆ A \} \]

while

\[ \overline A = \{ x∈ X: ∀ B∈{\mathcal B} , x∈ B⇒ B∩ A≠∅ \} \]

Solution 1

[0KT]

Download PDF
Bibliography
Book index
  • space, topological
  • topological space
  • \( \underline \bigcup \)
  • interior
  • closure
  • base, (topology)
Managing blob in: Multiple languages
This content is available in: Italian English