EDB β€” 0MT

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Definition 3

[0MT] Given a sequence \((x_ n)_ nβŠ† X\) and \(x∈ X\),

  • we will say that ”\((x_ n)_ n\) converges to \(x\)” if \(\lim _ n d(x_ n,x)=0\); we will also write \(x_ nβ†’_ n x\) to indicate that the sequence converges to \(x\).

  • We will say that ”\((x_ n)_ n\) is a Cauchy sequence” if

    \[ βˆ€ \varepsilon {\gt}0~ ~ βˆƒ Nβˆˆβ„•~ ,~ βˆ€ n,mβ‰₯ N~ ~ d(x_ n,x_ m){\lt}\varepsilon ~ ~ . \]

Download PDF
Bibliography
Book index
  • convergence, of a sequence
  • sequence, convergence of --- , see convergence of a sequence
  • sequence, Cauchy β€”
  • Cauchy, sequence , see sequence, Cauchy
  • metric space
Managing blob in: Multiple languages
This content is available in: Italian English