EDB β€” 111

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Definition 25

[111] Let \(B_ 1, B_ 2\) be two normed vector spaces. A function \(f: B_ 1 β†’ B_ 2\) is a linear isometry if it is linear and if

\begin{equation} \left\| z \right\| _{B_ 1} = \left\| f (z) \right\| _{B_ 2} βˆ€ \ z ∈ B_ 1~ ~ .\label{eq:isometria_ lineare} \end{equation}
26

Download PDF
Bibliography
Book index
  • linear isometry
  • normed vector space
Managing blob in: Multiple languages
This content is available in: Italian English