EDB β€” 155

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Definition 15

[155] Let \(AβŠ† ℝ\) and \(f:A→ℝ\) be a function; \(f\) is called uniformly continuous if

\[ βˆ€ \varepsilon {\gt}0,~ βˆƒ 𝛿 {\gt} 0 , ~ βˆ€ x,y∈ A,~ |x-y|{\lt}𝛿 ⟹ |f(x)-f(y)|{\lt}\varepsilon ~ ~ . \]

More in general, given \((X_ 1,d_ 1)\) and \((X_ 2,d_ 2)\) metric spaces, given the function \(f:X_ 1β†’ X_ 2\), \(f\) is uniformly continuous if

\[ βˆ€ \varepsilon {\gt}0,~ βˆƒ 𝛿 {\gt} 0 , ~ βˆ€ x,y∈ X_ 1,~ d_ 1(x,y){\lt}𝛿 ⟹ d_ 2(f(x),f(y)){\lt}\varepsilon ~ ~ . \]

Download PDF
Bibliography
Book index
  • function, uniformly continuous ---
  • UC , see function, uniformly continuous
  • function, uniformly continuous ---
Managing blob in: Multiple languages
This content is available in: Italian English