EDB β€” 182

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

E27

[182]Let \(CβŠ† ℝ^ n\) be a convex set, and \(f:C→ℝ\) a convex function. Given \(l\in {\mathbb {R}}\), define the sublevel set as

\[ L_ l = \{ x\in ℝ^ n: f(x)\le l\} \quad . \]

Show that \(L_ l\) is a convex (possibly empty) set. Deduce that the minimum points of \(f\) are a convex (possibly empty) set. Show that if \(f\) is strictly convex there can be at most one minimum point.

Download PDF
Bibliography
Book index
  • sublevel set
  • set, sublevel ---
  • convex function
Managing blob in: Multiple languages
This content is available in: Italian English