EDB β€” 1BC

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [1BC]We define the Beta function as

    B(x,y)=∫01txβˆ’1(1βˆ’t)yβˆ’1 dt .
    1. Show that the integral exists (finite) if and only if x,y>0.

    2. Note that B(x,y)=B(y,x)

    3. Relate B(n,m) to B(nβˆ’1,m+1). Then calculate the value of B(n,m) for n,m natural positives.

    4. Use the result to calculate

      ∫0πœ‹/2sin⁑(t)9cos⁑(t)7 dt  .

    Solution 1

    [1BD]

Download PDF
Bibliography
Book index
  • function, Riemann integrable ---
  • Riemann integral
Managing blob in: Multiple languages
This content is available in: Italian English