Exercises
[1BC]We define the Beta function as
\[ B(x,y) = β«_ 0^ 1 t^{x-1}(1-t)^{y-1}~ dt~ . \]Show that the integral exists (finite) if and only if \(x,y{\gt}0\).
Note that \(B(x,y)=B(y,x)\)
Relate \(B(n,m)\) to \(B(n-1,m+1)\). Then calculate the value of \(B(n,m)\) for \(n,m\) natural positives.
Use the result to calculate
\[ β«_ 0^{π/2} \sin (t)^ 9\cos (t)^ 7~ dt~ ~ . \]
1