EDB β€” 1BC

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [1BC]We define the Beta function as

    \[ B(x,y) = ∫_ 0^ 1 t^{x-1}(1-t)^{y-1}~ dt~ . \]
    1. Show that the integral exists (finite) if and only if \(x,y{\gt}0\).

    2. Note that \(B(x,y)=B(y,x)\)

    3. Relate \(B(n,m)\) to \(B(n-1,m+1)\). Then calculate the value of \(B(n,m)\) for \(n,m\) natural positives.

    4. Use the result to calculate

      \[ ∫_ 0^{πœ‹/2} \sin (t)^ 9\cos (t)^ 7~ dt~ ~ . \]

    Solution 1

    [1BD]

Download PDF
Bibliography
Book index
  • function, Riemann integrable ---
  • Riemann integral
Managing blob in: Multiple languages
This content is available in: Italian English