EDB β€” 1BP

↑ ← β†’ ↓ view in whole PDF view in whole HTML

View

English

Exercises

  1. [1BP] Prerequisites:[1G2].Let \(aβˆˆβ„\), let \(I\) be open interval with \(a∈ I\), and \(πœ‘_ 0:I→ℝ\) continuous.

    We recursively define \(πœ‘_ n:I→ℝ\) for \(nβ‰₯ 1\) via \(πœ‘_{n}(x)=∫_ a^ x πœ‘_{n-1}(t)\, {\mathbb {d}}t\); show that

    \begin{equation} πœ‘_{n+1}(x)=\frac 1{n!} ∫_ a^ x (x-t)^ nπœ‘_ 0(t)\, {\mathbb {d}}t \label{eq:multi_ primitiva} \end{equation}
    1

    Solution 1

    [1BQ]

Download PDF
Bibliography
Book index
  • function, Riemann integrable ---
  • Riemann integral
Managing blob in: Multiple languages
This content is available in: Italian English