Exercises
[1BP] Prerequisites:[1G2].Let \(aββ\), let \(I\) be open interval with \(aβ I\), and \(π_ 0:Iββ\) continuous.
We recursively define \(π_ n:Iββ\) for \(nβ₯ 1\) via \(π_{n}(x)=β«_ a^ x π_{n-1}(t)\, {\mathbb {d}}t\); show that
\begin{equation} π_{n+1}(x)=\frac 1{n!} β«_ a^ x (x-t)^ nπ_ 0(t)\, {\mathbb {d}}t \label{eq:multi_ primitiva} \end{equation}11